Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Vaccines (Basel) ; 11(1)2022 Dec 28.
Article in English | MEDLINE | ID: covidwho-2233684

ABSTRACT

Considering the early inequity in global COVID-19 vaccine distribution, we compared the level of population immunity to SARS-CoV-2 with vaccine uptake and refusal between rural and urban Kenya two years after the pandemic onset. A population-based seroprevalence study was conducted in the city of Nairobi (n = 781) and a rural western county (n = 810) between January and February 2022. The overall SARS-CoV-2 seroprevalence was 90.2% (95% CI, 88.6−91.2%), including 96.7% (95% CI, 95.2−97.9%) among urban and 83.6% (95% CI, 80.6−86.0%) among rural populations. A comparison of immunity profiles showed that >50% of the rural population were strongly immunoreactive compared to <20% of the urban population, suggesting more recent infections or vaccinations in the rural population. More than 45% of the vaccine-eligible (≥18 years old) persons had not taken a single dose of the vaccine (hesitancy), including 47.6% and 46.9% of urban and rural participants, respectively. Vaccine refusal was reported in 19.6% of urban and 15.6% of rural participants, attributed to concern about vaccine safety (>75%), inadequate information (26%), and concern about vaccine effectiveness (9%). Less than 2% of vaccine refusers cited religious or cultural beliefs. These findings indicate that despite vaccine inequity, hesitancy, and refusal, herd immunity had been achieved in Kenya and likely other African countries by early 2022, with natural infections likely contributing to most of this immunity. However, vaccine campaigns should be sustained due to the need for repeat boosters associated with waning of SARS-CoV-2 immunity and emergence of immune-evading virus variants.

2.
Viruses ; 14(8)2022 08 09.
Article in English | MEDLINE | ID: covidwho-1979414

ABSTRACT

The majority of Kenya's > 3 million camels have antibodies against Middle East respiratory syndrome coronavirus (MERS-CoV), although human infection in Africa is rare. We enrolled 243 camels aged 0-24 months from 33 homesteads in Northern Kenya and followed them between April 2018 to March 2020. We collected and tested camel nasal swabs for MERS-CoV RNA by RT-PCR followed by virus isolation and whole genome sequencing of positive samples. We also documented illnesses (respiratory or other) among the camels. Human camel handlers were also swabbed, screened for respiratory signs, and samples were tested for MERS-CoV by RT-PCR. We recorded 68 illnesses among 58 camels, of which 76.5% (52/68) were respiratory signs and the majority of illnesses (73.5% or 50/68) were recorded in 2019. Overall, 124/4692 (2.6%) camel swabs collected from 83 (34.2%) calves in 15 (45.5%) homesteads between April-September 2019 screened positive, while 22 calves (26.5%) recorded reinfections (second positive swab following ≥ 2 consecutive negative tests). Sequencing revealed a distinct Clade C2 virus that lacked the signature ORF4b deletions of other Clade C viruses. Three previously reported human PCR positive cases clustered with the camel infections in time and place, strongly suggesting sporadic transmission to humans during intense camel outbreaks in Northern Kenya.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Animals , Antibodies, Viral , Camelus , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Disease Outbreaks , Humans , Kenya/epidemiology , Zoonoses
3.
Health Secur ; 19(4): 413-423, 2021.
Article in English | MEDLINE | ID: covidwho-1338084

ABSTRACT

Field simulation exercises (FSXs) require substantial time, resources, and organizational experience to plan and implement and are less commonly undertaken than drills or tabletop exercises. Despite this, FSXs provide an opportunity to test the full scope of operational capacities, including coordination across sectors. From June 11 to 14, 2019, the East African Community Secretariat conducted a cross-border FSX at the Namanga One Stop Border Post between the Republic of Kenya and the United Republic of Tanzania. The World Health Organization Department of Health Security Preparedness was the technical lead responsible for developing and coordinating the exercise. The purpose of the FSX was to assess and further enhance multisectoral outbreak preparedness and response in the East Africa Region, using a One Health approach. Participants included staff from the transport, police and customs, public health, animal health, and food inspection sectors. This was the first FSX of this scale, magnitude, and complexity to be conducted in East Africa for the purpose of strengthening emergency preparedness capacities. The FSX provided an opportunity for individual learning and national capacity strengthening in emergency management and response coordination. In this article, we describe lessons learned and propose recommendations relevant to FSX design, management, and organization to inform future field exercises.


Subject(s)
Civil Defense , Disaster Planning , Africa, Eastern , Disease Outbreaks , Humans , Public Health , World Health Organization
4.
COVID ; 2(5):586-598, 2022.
Article in English | MDPI | ID: covidwho-1820194

ABSTRACT

Using classical and genomic epidemiology, we tracked the COVID-19 pandemic in Kenya over 23 months to determine the impact of SARS-CoV-2 variants on its progression. SARS-CoV-2 surveillance and testing data were obtained from the Kenya Ministry of Health, collected daily from 306 health facilities. COVID-19-associated fatality data were also obtained from these health facilities and communities. Whole SARS-CoV-2 genome sequencing were carried out on 1241 specimens. Over the pandemic duration (March 2020–January 2022), Kenya experienced five waves characterized by attack rates (AR) of between 65.4 and 137.6 per 100,000 persons, and intra-wave case fatality ratios (CFR) averaging 3.5%, two-fold higher than the national average COVID-19 associated CFR. The first two waves that occurred before emergence of global variants of concerns (VoC) had lower AR (65.4 and 118.2 per 100,000). Waves 3, 4, and 5 that occurred during the second year were each dominated by multiple introductions each, of Alpha (74.9% genomes), Delta (98.7%), and Omicron (87.8%) VoCs, respectively. During this phase, government-imposed restrictions failed to alleviate pandemic progression, resulting in higher attack rates spread across the country. In conclusion, the emergence of Alpha, Delta, and Omicron variants was a turning point that resulted in widespread and higher SARS-CoV-2 infections across the country.

5.
Int J Infect Dis ; 112: 25-34, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1654527

ABSTRACT

BACKGROUND: The lower than expected COVID-19 morbidity and mortality in Africa has been attributed to multiple factors, including weak surveillance. This study estimated the burden of SARS-CoV-2 infections eight months into the epidemic in Nairobi, Kenya. METHODS: A population-based, cross-sectional survey was conducted using multi-stage random sampling to select households within Nairobi in November 2020. Sera from consenting household members were tested for antibodies to SARS-CoV-2. Seroprevalence was estimated after adjusting for population structure and test performance. Infection fatality ratios (IFRs) were calculated by comparing study estimates with reported cases and deaths. RESULTS: Among 1,164 individuals, the adjusted seroprevalence was 34.7% (95% CI 31.8-37.6). Half of the enrolled households had at least one positive participant. Seropositivity increased in more densely populated areas (spearman's r=0.63; p=0.009). Individuals aged 20-59 years had at least two-fold higher seropositivity than those aged 0-9 years. The IFR was 40 per 100,000 infections, with individuals ≥60 years old having higher IFRs. CONCLUSION: Over one-third of Nairobi residents had been exposed to SARS-CoV-2 by November 2020, indicating extensive transmission. However, the IFR was >10-fold lower than that reported in Europe and the USA, supporting the perceived lower morbidity and mortality in sub-Saharan Africa.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Cross-Sectional Studies , Humans , Kenya/epidemiology , Middle Aged , Seroepidemiologic Studies
6.
Sci Afr ; 9: e00506, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-949707
8.
Am J Trop Med Hyg ; 103(2): 564-569, 2020 08.
Article in English | MEDLINE | ID: covidwho-458968

ABSTRACT

Three months since the detection of the first COVID-19 case in Africa, almost all countries of the continent continued to report lower morbidity and mortality than the global trend, including Europe and North America. We reviewed the merits of various hypotheses advanced to explain this phenomenon, including low seeding rate, effective mitigation measures, population that is more youthful, favorable weather, and possible prior exposure to a cross-reactive virus. Having a youthful population and favorable weather appears compelling, particularly their combined effect; however, progression of the pandemic in the region and globally may dispel these in the coming months.


Subject(s)
Age Distribution , Coronavirus Infections/mortality , Pneumonia, Viral/mortality , Weather , Africa/epidemiology , Betacoronavirus , COVID-19 , Humans , Morbidity , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL